Wound healing plays an important role in protecting the human body from outside threats. Impairment of this process results in the formation of refractory skin ulcers, including diabetic ulcer, decubitus and ulcers in collagen diseases, and varicities syndrome.1 These conditions increase the chance of infection and also seriously deteriorate the quality of life.1 Ischemic ulcers that arise as complications of diabetes mellitus, obliterating arteriosclerosis, and collagen diseases including rheumatoid arthritis are frequently resistant to routine therapy because of poor blood supply to wound tissues and impaired neovascularization.1 Thus, improvement of the blood supply is important for the improvement of refractory skin ulcers.

Almost 30 years ago, extracorporeal shock wave (ESW) therapy was successfully introduced in urology and gastroenterology as lithotripsy.4,5 Recently, ESW therapy has been adapted and applied in different clinical fields for the treatment of bone nonunions, plantar fasciitis, epicondylitis of the elbow, and calcifying or noncalcifying tendinitis,6,7 although it is used in a low-energy (LE) condition compared with lithotripsy. We have reported that LE-ESW treatment effectively improves myocardial ischemia in patients with severe angina pectoris and ameliorates walking ability in those with peripheral artery disease and intermittent claudication.8,9 The cascades of biological processes elicited by LE-ESW are directly correlated with enhanced blood supply and tissue regeneration.10,11 In a recent study by Stojadinovic et al., LE-ESW treatment enhanced graft acceptance in murine skin isografts by inducing anti-inflammatory responses and by promoting endothelial cell proliferation and neovascularization.12 Furthermore, the clinical applications of LE-ESW treatment for the treatment of wounds have been recently described. Schaden et al. demonstrated that LE-ESW treatment is feasible and well-tolerated by patients with acute and chronic wounds.13 However, the precise mechanisms for the beneficial effects of LE-ESW treatment remain unclear.

Nitric oxide (NO), a free radical that mediates diverse functions in a range of biological responses,14 is produced by a family of NO synthase (NOS) enzymes.15 Three NOS isoforms have been distinguished in mammalian species: neuronal NOS, inducible NOS, and endothelial NOS (eNOS).16 In the vasculature, NO is mostly generated by eNOS.17 The generated NO plays a crucial role in maintaining vascular homeostasis, including vascular tone, leukocyte adhesion to the endothelium, proliferation of vascular smooth muscle cells, and platelet aggregation and adhesion to the vessel walls.18,19 Diabetic microangiopathy and macroangiopathy, including foot ulcer and accelerated atherosclerosis, are the main causes of morbidity and mortality in patients with diabetes mellitus.20 A hallmark of diabetic vascular
complications is endothelial cell dysfunction, which is characterized by the lowered production of NO, including impaired endothelium-dependent vasorelaxation, enhanced leukocyte–endothelial interactions, and thrombosis. A large body of evidence has implicated the dysfunctional eNOS and decreased NO availability in endothelium as a major pathogenic mechanism in diabetic vascular complications in humans and diabetic animals.

In the present study, therefore, we induced diabetes mellitus in eNOS knockout (KO) and wild-type (WT) mice with a C57BL/6 background by injecting low-dose streptozotocin (STZ), and we used the dorsal skin defect to evaluate wound healing in diabetic mice. The effects of LE-ESW treatment on the wound healing processes were examined. Here, we attempted to determine whether LE-ESW treatment accelerated wound healing and how eNOS is involved.

MATERIALS AND METHODS

Animals

eNOS-KO mice were established by Huang and coworkers and back-crossed over eight generations with C57BL/6 mice. These mice were bred in a pathogen-free environment in the Institute for Animal Experimentation of Tohoku University Graduate School of Medicine. C57BL/6 mice obtained from Clea Japan, Inc. (Tokyo, Japan) were used as WT control mice. The mice were subjected to experiments at 7 to 8 weeks of age. To minimize possible discomfort to the animals, m-acetamidophenol was mixed with drinking water at 0.25 mg/mL after wounding. The animals were housed in individual cages during the experimental period. All experimental protocols described in the present study were approved by the Ethics Review Committee for Animal Experimentation of Tohoku University.

Induction of diabetes mellitus

Diabetic mice were established by intraperitoneal injection of 150 mg/kg STZ (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) dissolved in 5 μM sodium citrate buffer (pH 4.5) after one night starvation. Control mice received injections of equivalent volumes of sodium citrate buffer. Fasting blood glucose levels in diabetic mice were elevated to more than 33.3 mM on day 14 posttreatment, and this condition continued for more than 5 weeks.

Wound creation and tissue collection

The diabetic mice were anesthetized by intraperitoneal injection of 40 mg/kg sodium pentobarbital (Nembutal, Abbott Laboratories, Tokyo, Japan). The dorsal hairs were shaved to fully expose the skin, which was then rinsed with 70% ethanol. A full-thickness wound was created by a sterile biopsy punch with a diameter of 8 mm (Biopsy Punch, Kai Industries Co., Ltd, Gifu, Japan) on the dorsal region, which was 1 cm away from the spinal column in wild-type (WT) and endothelial nitric oxide synthase knockout (eNOS-KO) mice. The wounds were covered with a polyurethane film. The shock waves were produced by Duolith SD-1 (Storz Medical, Tagerwilen, Switzerland). We exposed the wounds directly to LE-ESW through the gel.

Figure 1. Low-energy extracorporeal shock wave (LE-ESW) treatment. Full-thickness wound was created by a biopsy punch on the dorsal region, which was 1 cm away from the spinal column in wild-type (WT) and endothelial nitric oxide synthase knockout (eNOS-KO) mice. The wounds were covered with a polyurethane film. The shock waves were produced by Duolith SD-1 (Storz Medical, Tagerwilen, Switzerland). We exposed the wounds directly to LE-ESW through the gel.

Application of LE-ESW therapy and device parameters

The shock waves were produced by Duolith SD-1 (Storz Medical, Tagerwilen, Switzerland). LE-ESW treatment was applied according to the following parameters: Duolith SD-1 with a probe corresponding to a depth of entrance of 50 mm and a surface focus of 5 mm × 30 mm, energy flow density per shot set at 0.25 ml/mm² and 4 Hz frequency. The skin wounds were treated with 100 shots onto the surface of 4 cm² per side. We exposed the wounds directly to LE-ESW as shown in Figure 1.

Morphometric analysis of wound healing

The process of wound healing was macroscopically monitored by taking digital photographs. When the wounds were created, photographs were taken before dressing. At various time points, the polyurethane film was gently removed in the sacrificed mice, and the wounds were photographed. The wound areas were measured by tracing the margin and calculating the pixel area using AxioVision imaging software Release 4.6 (Carl Zeiss Micro Imaging Japan, Tokyo, Japan). Wound healing was evaluated as percent wound closure, which was calculated by the following formula: % wound closure = (wound area at the indicated time point/wound area on day 0) × 100.

Histology and immunohistochemistry

The resected specimens were fixed with a 4% paraformaldehyde–phosphate buffer solution and embedded in paraffin. Three-micrometer-thick sections from the central portion of each wound were stained with hematoxylin and
Wound Rep Reg (2012) •••• © 2012 by the Wound Healing Society

Hayashi et al. Low-energy extracorporeal shock wave therapy in skin wound healing

eosin (HE) according to the standard method and then subjected to microscopic observation. When the wounds of each group were completely reepithelialized, the height of the dermis (HD) in the center of the wounds and the width of the middle dermis (WD) in the wounds were determined on the HE-stained sections to evaluate wound contraction and scar formation, as previously described.23

For immunohistochemistry, the sections were stained with anti-cluster of differentiation (CD)31 Ab (1 : 600 dilution; Santa Cruz Biotechnology, Inc.), CD34 related antigen (1 : 100 dilution; Becton Dickinson and Company, Franklin Lakes, NJ), anti-α-smooth muscle actin (α-SMA) Ab (1 : 200 dilution; Vector Laboratories, Inc., Burlingame, CA), anti-eNOS Ab (1 : 100 dilution; Santa Cruz Biotechnology, Inc.), or anti-VEGF Ab (1 : 1,000 dilution; Santa Cruz Biotechnology, Inc.) after endogenous peroxidase and nonspecific binding were blocked. They were then incubated with peroxidase-conjugated secondary antibodies (Histofine Simple Stain MAX PO, Nichirei Bioscience, Tokyo, Japan). Control sections were treated with nonimmune IgG in place of any of the first antibodies. To evaluate the formation of new blood vessels, the vascular density in the granulation tissues at four random fields was determined by counting the numbers of CD31- and CD34-positive vessels per square millimeter. The eNOS-positive vessels were defined as those in which more than 10% of endothelial cells were stained with Ab against this molecule. The incidence of eNOS expression at wound tissues was expressed as a mean ratio of the eNOS-positive vessels to the total ones detected in four randomly selected fields at 400x magnification under microscopic observation.

Reverse transcription-polymerase chain reaction (PCR)

Total ribonucleic acid (RNA) was extracted from wound tissues using ISOGEN (Wako Pure Chemical Industries, Osaka, Japan) according to the manufacturer’s instructions. The RNA was reverse-transcribed using Oligo (dT) and Superscript RT II reverse transcriptase (Invitrogen Life Technologies, Carlsbad, CA). The obtained complementary deoxyribonucleic acid (cDNA) was then amplified using an automatic DNA thermal cycler (PerkinElmer, GeneAmp PCR Systems 9700, Applied Biosystems, Foster City, CA) using specific primers 5′-AAG ACA AGG CAG CGG TGG AA-3′ (sense) and 5′-GCA GGG GAC AGG AAA TAG TT-3′ (anti-sense) for eNOS, 5′-TGA ACT TTC TGC TCT CTT GG-3′ (sense), 5′-AAC AAA TGC TTT CTC CGC TC-3′ (antisense) for VEGF, and 5′-GGG GAA TAG CCA AGA AGT TG-3′ (sense), 5′-GAT TCA ACT TGC GCT CAT CTT AGG C-3′ (antisense) for hypoxanthine phosphoribosyl transferase (HPRT). We added 1.0 µL of the sample cDNA solution to 49 µL of the reaction mixture, which was composed of the following constituents: 10 mM Tris–HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 10 µg/mL gelatin, deoxyribonucleotide triphosphate (dNTP) (each at a concentration of 200 µM), 1.0 µM sense and antisense primer, and one unit of Takara EX Taq (Takara Bio Inc., Shiga, Japan). PCR was conducted under a condition of 1 minute at 94 °C, and then cycles of 30 seconds at 94 °C, 30 seconds at 61 °C, and 45 seconds at 72 °C, and finally 7 minutes at 72 °C. The number of cycles was 40, 40, and 26 for eNOS, VEGF, and HPRT, respectively. The PCR products were electrophoresed on 1.5% agarose gels, stained with 0.5 µg/mL ethidium bromide, and observed using an ultraviolet transilluminator.

Western blotting

Frozen skin wound tissues were weighed and homogenized at 10 mg/50 µL in a lysis buffer (2,000 µL Tissue Protein Extraction Reagent, Thermo Scientific, Rockford, IL, and 20 µL Protease Inhibitor Cocktail Set III, Calbiochem, Darmstadt, Germany). The protein concentration was determined using the bicinchoninic acid method (Pierce Biotechnology, Rockford, IL). The lysates added to the 60 µL electrophoresis sample buffer containing 855 µL of laemmli buffer and 45 µL of 5% 2-mercaptoethanol (Bio-Rad Laboratories, Berkeley, CA) were boiled for 4 minutes at 95 °C. Equal sample amounts were electrophoresed on 4 to 15% polyacrylamide gels and electroblotted onto a polyvinylidene difluoride membrane (Bio-Rad Laboratories). Nonspecific binding was blocked by immersion of the membranes for 60 minutes in 5% skim milk in Tris-buffered saline (pH 7.4) containing 0.1% Tween at room temperature. The membranes were washed with the same buffer and incubated at 1 : 1,000 with anti-VEGF Ab or 1 : 200 with anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH) Ab (Santa Cruz Biotechnology, Inc.) for 2 hours at room temperature, followed by washing and incubation at 1 : 3,000 with horseradish peroxidase (HRP)-conjugated anti-rabbit IgG (Amersham Pharmacia Biotech, Freiburg, Germany) for 60 minutes at room temperature. Then chemiluminescence catalyzed by HRP was detected using a nonradioactive light-emitting system with Western Lightning Plus-ECL (PerkinElmer Life Sciences, Waltham, MA), and the positive signals were quantified using a LAS4000 chemiluminescence detector (Fuji Photo Film, Tokyo, Japan), and the positive signals were quantified. For quantification of Western blots, densitometry was used. Western blot pictures were analyzed with Image J software (National Institutes of Health, Bethesda, MD) in accordance with the Web site tutorial (see http://rsb.info.nih.gov/ij/).

Statistical analysis

Data were expressed as mean ± standard deviation. Statistical analysis between groups was performed using Student’s t-test. Statistical analysis on the obtained density values was carried out with Microsoft Excel and the Graph Pad Prism program (Graphpad Software, Inc., San Diego, CA). A p-value of less than 0.05 was considered to indicate significance.

RESULTS

Role of eNOS in LE-ESW–induced promotion of wound healing

To clarify the effect of LE-ESW treatment on wound healing, we created full-thickness wounds on the dorsal skin of the diabetic WT and eNOS-KO mice, which did or did not undergo LE-ESW treatment. As shown in Figure 2A, there was not much difference in the process of wound closure between these two mouse groups in the absence of
Low-energy extracorporeal shock wave therapy in skin wound healing

Hayashi et al.

LE-ESW treatment. In contrast, the wound closure was accelerated in the LE-ESW-treated WT mice compared with that in the untreated WT mice, whereas this effect was not clear in the eNOS-KO mice. To quantitatively evaluate these findings, the wound area was measured, and the percent wound closure relative to that on day 0 was shown on day 10 after LE-ESW treatment and after sham treatment. As shown in Figure 2B, this value was significantly increased in the LE-ESW-treated WT mice compared with that in the untreated WT mice (88.2 ± 14.5% vs. 71.1 ± 13.6% in the LE-ESW-treated [n = 11] and the untreated WT mice [n = 8], respectively), whereas this effect was not observed in the eNOS-KO mice (71.4 ± 12.4% vs. 71.9 ± 18.6% in the LE-ESW-treated [n = 7] and the untreated eNOS-KO mice [n = 6], respectively). These results indicated that LE-ESW treatment was effective in accelerating wound healing in diabetic mice and that this effect required the expression of eNOS.

Histological analyses of wound granulation and myofibroblast accumulation

To evaluate the effect of LE-ESW treatment on wound contraction and scar formation, we histologically analyzed the HE-stained sections on day 10 after LE-ESW or sham treatment, when the wounds were completely reepithelialized, in the WT and the eNOS-KO mice. When HD and WD were compared (Figure 3A), HD was significantly increased and WD was significantly decreased in the LE-ESW-treated WT mice compared with the untreated WT mice (HD, 310.7 ± 116.4 μm vs. 172.6 ± 85.8 μm; WD, 2639.1 ± 1334.2 μm vs. 4226.9 ± 1225.8 μm in the LE-ESW-treated [n = 11] and the untreated WT mice [n = 8], respectively) (Figure 3B). In contrast, both HD and WD were not significantly different between the LE-ESW-treated and the untreated eNOS-KO mice (HD, 139.5 ± 30.7 μm vs. 136.4 ± 50.5 μm; WD, 4213.9 ± 765.0 μm vs. 4492.9 ± 730.1 μm in the LE-ESW-treated [n = 7] and the untreated eNOS-KO mice [n = 6], respectively) (Figure 3B). These results suggested that LE-ESW treatment did not affect wound contraction and scar formation in the eNOS-KO mice.

In alternate experiments, we evaluated wound contraction and scar formation by detecting the α-SMAexpressing myofibroblasts, which play an important role in this process,26 using immunohistochemical analysis. As shown in Figure 4, α-SMA-positive myofibroblasts formed elongated masses located on the edges of dermal wounds, and the areas with myofibroblast accumulation were much more pronounced in LE-ESW-treated WT mice than those in untreated WT mice. In striking contrast, the α-SMA-positive areas did not differ a great deal between the LE-ESW-treated and the untreated eNOS-KO mice (Figure 4).

Enhanced expression of eNOS in wound tissues by LE-ESW treatment

All of the results thus far have indicated that LE-ESW treatment accelerates the wound healing process in diabetic mice and is totally dependent on eNOS. This suggests that these effects are associated with the induction of eNOS expression in wound tissues. To address this possibility, we examined the expression of eNOS in wound tissues at the messenger RNA (mRNA) and protein levels using reverse transcription (RT)-PCR and immunohistochemical analyses, respectively. As shown in Figure 5A, eNOS mRNA was increased in the LE-ESW-treated WT mice compared with that in the untreated WT mice. In line with these results, in an immunohistochemi-
Angiogenesis in the skin wound tissues

Angiogenesis in the wound tissues in WT and eNOS-KO mice was analyzed by evaluating the vascular density in the sections stained with anti-CD31 or anti-CD34, which was used to localize or confirm the areas of angiogenesis, respectively. The number of blood vessels in the wound tissues was counted on day 7 after LE-ESW or sham treatment in WT or eNOS-KO mice. As shown in Figure 6A and B, the vascular densities were significantly higher in the LE-ESW-treated WT mice than those in the untreated WT mice, whereas this difference was not observed in the eNOS-KO mice in the sections stained with anti-CD31 Ab (18.9 ± 7.4 count/mm² vs. 10.5 ± 4.8 count/mm² in the LE-ESW-treated [n = 5] and the untreated WT mice [n = 5], respectively; 14.5 ± 4.5 count/mm² vs. 13.6 ± 6.4 count/mm² in the LE-ESW-treated [n = 6] and the untreated eNOS-KO mice [n = 5], respectively). The results with anti-CD34 Ab were consistent with those with anti-CD31 Ab (16.6 ± 1.4 count/mm² vs. 9.8 ± 5.2 count/mm² in the LE-ESW-treated [n = 5] and the untreated WT mice [n = 5], respectively; 9.6 ± 3.5 count/mm² vs. 10.6 ± 4.0 count/mm² in the LE-ESW-treated [n = 6] and the untreated eNOS-KO mice [n = 5], respectively). These results indicated that eNOS was essential for the angiogenesis in wound tissues caused by LE-ESW treatment and suggested that LE-ESW-induced eNOS expression may be involved in the expression of VEGF, which plays a central role in the generation of new vessels.27

Figure 4. Accumulation of myofibroblasts in dermal area. Full-thickness wounds were made with a punch biopsy instrument in wild-type (WT) and endothelial nitric oxide synthase knockout (eNOS-KO) diabetic mice. Sections of skin wounds on day 7 after low-energy extracorporeal shock wave (LE-ESW) or sham treatment were stained with anti-alpha-smooth muscle actin Ab for detection of myofibroblasts (n = 3 in each group). ESW, LE-ESW-treated; sham, sham-treated.
To address this possibility, we conducted RT-PCR with RNA extracted from wound tissues. As shown in Figure 7A, VEGF mRNA was increased in the LE-ESW-treated WT mice compared with that in the untreated WT mice. In striking contrast, in the eNOS-KO mice, the expression of this molecule was negligible in the absence of LE-ESW treatment, and even after this treatment, no positive bands were detected in VEGF, although HPRT mRNA was almost comparably detected in the LE-ESW-treated and untreated groups. In line with these results, in an immunoblotting analysis (Figure 7B), VEGF expression was significantly increased in the LE-ESW-treated WT mice compared with that in the untreated WT mice as shown by the relative expression of VEGF to GAPDH (2.42 ± 0.41 count/mm² vs. 1.58 ± 0.37 count/mm² in the LE-ESW-treated [n = 3] and the untreated WT mice [n = 3], respectively) (Figure 7C). In contrast, in the eNOS-KO mice, the level of VEGF expression was not statistically different between the LE-ESW-treated and the untreated groups (1.01 ± 0.21 count/mm² vs. 1.06 ± 0.1 count/mm² in the LE-ESW-treated [n = 3] and the untreated eNOS-KO mice [n = 3], respectively) (Figure 7C).

Figure 5. Expression of endothelial nitric oxide synthase (eNOS) in the wound tissues by low-energy extracorporeal shock wave (LE-ESW) treatment. Full-thickness wounds were made with a punch biopsy instrument in diabetic wild-type (WT) mice. (A) Reverse transcription polymerase chain reaction was performed for detection of eNOS messenger ribonucleic acid (mRNA) using total RNA isolated from wound tissues on day 3 after LE-ESW or sham treatment (n = 3 per each group). Hypoxanthine phosphoribosyl transferase (HPRT) was used as an internal control. (B) Immunohistochemical analysis was performed to assess the expression of eNOS on the vascular endothelia cells, detected as CD31⁺ cells, in the wound tissues. Sections of skin wounds on day 5 after LE-ESW or sham treatment were stained with anti-CD31 or anti-eNOS Ab. A red arrow indicates eNOS expressed on the vascular endothelial cells. (C) The ratios of eNOS-positive vessels to the total ones detected in four randomly selected visual fields at 400x magnification under microscopic observation are shown (n = 4 in each group). The data are expressed as mean ± standard deviation. Closed column, LE-ESW-treated; ESW, LE-ESW-treated; open column, sham-treated; sham, sham-treated. *p < 0.05.

Figure 6. Angiogenesis in the wound tissues. Full-thickness wounds were made with a punch biopsy instrument in wild-type (WT) and endothelial nitric oxide synthase knockout (eNOS-KO) diabetic mice. (A) Immunohistochemical analysis was performed to assess the generation of new vessels in the wound tissues. Sections of the skin wounds on day 7 after low-energy extracorporeal shock wave (LE-ESW) or sham treatment were stained with anti-CD31 or anti-CD34. (B) The vascular density/mm² determined by counting the number of CD31⁺ or CD34⁺ vessels within four visual fields at 400x magnification under microscopic observation is shown (n = 5 in each group). The data are expressed as mean ± standard deviation. Closed column, LE-ESW-treated; ESW, LE-ESW-treated; open column, sham-treated; sham, sham-treated. *p < 0.05.
DISCUSSION

In the present study, we examined the effect of LE-ESW treatment on the wound healing process using a mouse model of refractory skin wounds under a diabetic condition. We found that this treatment efficiently induced the expression of eNOS and VEGF at the wound sites, promoted the generation of new vessels, and improved wound healing. Furthermore, the beneficial effects of this treatment were significantly attenuated in eNOS-KO mice compared with those in WT mice. These results clearly showed that LE-ESW treatment accelerated the healing process of refractory skin wounds by inducing the expression of VEGF and promoting neovascularization, which was totally dependent on the expression of eNOS.

In previous studies, the expression of eNOS in vascular endothelial cells was reported to be a critical process in the generation of new vessels and wound healing. Brownlee and coworkers demonstrated that activation of eNOS was induced by Akt serine/threonine kinase-dependent phosphorylation of this molecule at Ser1177 in vascular endothelial cells when stimulated with insulin. They also indicated that a high glucose condition led to the introduction of O-linked glycosylation at the same position of the amino acid, which interfered with the phosphorylation and subsequent activation of eNOS. Similarly, Gallagher et al. demonstrated that the decreased expression of eNOS and attenuated vasculogenesis led to refractory skin wounds in diabetic mice. In the present study, diabetic mice established by STZ administration experienced delayed wound healing compared to nondiabetic mice. LE-ESW treatment improved the impaired wound healing in diabetic mice. In accordance with the aforementioned findings, the activation of eNOS is assumed to be involved in the beneficial effects of this treatment. Supporting this idea, we found that LE-ESW treatment induced the expression of eNOS at both the mRNA and protein levels at the wound sites in diabetic mice. Previously, frictional forces along the surface of the endothelium exerted by flowing blood were reported to be potent stimuli for endothelial NO production. These forces are proportional to the product of blood viscosity and blood velocity at the endothelial wall and collectively have been termed “endothelial shear stress.” Endothelial surfaces possess mechanoreceptors that detect shear stress, and data concerning the pathways responsible for phosphorylation and activation of eNOS are emerging. Detectable local thermal or chemical effects have also been discussed, but no evidence of clinical relevance could be found. In addition, the energy of LE-ESW is not sufficient to cause a significant warming in focus or even at a distance from it, and therefore, thermal effects can be ruled out in ESW as indicated in the manufacturer’s instruction. As suggested by these previous findings, shear stress to the vascular endothelial cells may be generated by LE-ESW treatment, and eNOS may be induced via a PI3K-Akt signaling pathway.

We have previously demonstrated that LE-ESW treatment to the ischemic myocardium increased the expression of VEGF in a pig model of chronic myocardial ischemia. Kuo et al. reported similar findings in a rat model of skin wound healing under a diabetic condition generated by treatment with STZ. In the present study, we also detected the expression of VEGF at both the mRNA and protein levels in diabetic mice after receiving LE-ESW treatment. Interestingly, the LE-ESW-induced expression of VEGF was abrogated or strongly attenuated in eNOS-KO mice. In addition, the beneficial effects of LE-ESW treatment on the vasculogenesis, as evaluated by the density of CD31+ or CD34+ vascular endothelial cells, and in wound healing, as detected by the wound closure and expression of α-SMA, were attenuated in eNOS-KO mice compared with WT mice. Recently, Jing Zheng and coworkers demonstrated that the administration of NG-monomethyl-L-arginine, an inhibitor of eNOS-dependent NO synthesis, leads to a decrease in the expression of VEGF and the generation of new vessels in sheep placenta. Thus, eNOS can be recognized as a critical molecule in the processes of neovascularization and wound healing, although the precise mechanism remains to be clarified.

The wound healing process is composed of the coagulation, inflammation, proliferation, and remodeling phases, in
which a variety of pro-inflammatory cytokines and growth factors, such as interleukin-1β, tumor necrosis factor-α, transforming growth factor-β, epidermal growth factor, platelet-derived growth factor, and basic fibroblast growth factor are produced. In the proliferation phase, vascular endothelial cells play an important role together with fibroblasts. Endothelial progenitor cells migrate into the wound sites while actively proliferating under stimulation from platelets, activated macrophages, and fibroblasts. This leads to the generation of new capillary vessels and the formation of a capillary vessel network, followed by granuloma formation and wound constrictions. In chronic wounds, this orderly and intricate biological response to wounding is disrupted. The inability to progress through the inflammatory phase of wound healing to complete epithelialization is considered a challenging clinical problem.

In conclusion, we demonstrated that LE-ESW treatment accelerated skin wound healing by inducing the expression of eNOS and induces NO synthesis, which contribute to the wound healing process by suppressing the pro-inflammatory cytokines and promoting the transition from the inflammatory phase to the proliferation phase. Further investigations are necessary to address this interesting possibility.

In conclusion, we demonstrated that LE-ESW treatment accelerates skin wound healing by inducing the expression of eNOS, which promotes the expression of VEGF and the generation of new vessels in diabetic mice. LE-ESW treatment has many advantages, including the following: neither anesthesia nor invasive manipulation is required; the therapy is repeatable if necessary; and adverse effects are rare. Refractory skin wound healing in diabetic patients is a particularly challenging clinical problem. LE-ESW treatment could be considered a promising therapeutic option in these patients. The present study presents important implications to the progress of this novel therapy.

ACKNOWLEDGMENTS

This work was supported by a Grant-in-Aid for Scientific Research (B) (21390476) from the Ministry of Education, Science and Culture of Japan. This study was supported in part by Grants-in-Aid from the Japanese Ministry of Health, Labor and Welfare, Tokyo, Japan (H21-rinsyokenyu-ippan-012).

Conflict of Interest: The authors state no financial conflicts of interest.

REFERENCES

